
Quick Tour of Instant File Access

To view this tour, simply click the ">>" and "<<" buttons to move through the pages of the tour. Or you
can click on the topics below. When finished, simply close the tour application.

What does IFA do?
File History
Floaters and Permanents
File Viewers
Replacing Dialogs with All To Common
Using Long File Names
Summing It All Up

What does Instant File Access do?

Instant File Access (IFA) saves you time, and lots of it! It enhances the File Dialogs of Windows
applications by adding features such as...

 Lets you see Windows 95 long filenames in Windows 3.11 applications
 Long Filename support in Windows 3.11 (uses 4DOS description format)

 Quick Access to previously opened files
 File/Text search (and replace)
 File/directory functions such as copy/move/rename, etc.
 Floating file lists of favourite files per application.

The picture below is a file dialog with IFA attached. You can click on various parts of the picture to
display help on the item.

File History

The left few buttons of the toolbar are used to display the files and directories previously opened by the
application owning the file dialog. As you open more files, this list grows until the limit is reached. This
limit is set in the Main Configuration dialog.

NOTE: You can also get this list and toolbar functions by clicking the secondary mouse button (the Right
Button for most) over the File Dialog. This activates a popup menu of functions.

Long File Names

IFA also lets you assign long meaningful names to your files. Instead of naming the minutes of your
business meeting held on 09/95...

BUSM0995.DOC

You can name it...
Business Meeting of September, 1995

To save a file with a long name, you can simply type the long name in the Filename field. Or you can
assign a regular DOS name to the file, then rename it.

If you use Windows 95, you will see actual Windows 95 long filenames in your Windows 3.1x file dialogs.
When saving files with long names, the long name will be viewed as a long name in Windows 95
applications.

Floaters and Permanents

Floaters are small floating windows appearing beside the file dialog. They contain lists of your favorite
or most frequently used files and directories. You can create Floaters to hold your Word templates, or
Excel Time Sheet form, or whatever file you repeatedly need.

Permanents are like Floaters, only they appear at the top of the file and directory popups.
To create Floaters and Permanents, click on the Configuration Button in the toolbar and select the
Floaters/Perms/Databases tab. You can then create new File Databases to hold your file lists. Then
add that database to your Floaters and/or Permanents lists.

File Viewers

Instant File Access lets you see the file you are about to open, before you open it. Lets say you are
looking for a file contained within one of the 4 ZIP files in a directory. Simply hold down the ALT key
while clicking the primary mouse button on the file name, and a small window will appear displaying the
contents of the ZIP file. This can be done for text files as well. The functionality of the file viewer can be
easily modified and extended by editing the VIEW_TXT.DES file in the IFA directory.

See also...
Adding More Viewers

All To Common (tm)
Some applications don't support the Common Dialog facility of Windows 3.1, so they display their own
dialog to load and save files. The dialog below is an example of one.

A feature known as All To Common
can take care of this by replacing
this dialog with a Windows 3.1
Common File Dialog, which is
compatible with IFA. The replaced
dialog is shown on the next page...

To replace a non-standard file dialog, simply call up the All To Common Wizard from IFA's main desktop
icon. This wizard takes you through a few simple steps which allow you to replace the non-standard file
dialog with a Common File Dialog. You will then have access to IFA's features within that program, and
never have to see the original file dialog again.

As You Can See

Instant File Access saves you time, and that's important. It also extends
your creative abilities beyond the document text, and into the file name as well.

Alecoft
507 de la Metairie
Nuns' Island, Quebec
CANADA H3E 1S4

Numbers
Compuserve: 72154,15
Internet: 72154.15@compuserve.com
World Wide Web: http://ourworld.compuserve.com/homepages/alexoft
Microsoft Network: Alexoft
Phone: (514) 762-1792

Open Last File
This button is used to open the last file opened
by the application that owns this file dialog. To
open other previously opened files, click the
small down-arrow button to the right. To see
what file will be opened, simply hold the mouse
pointer over the button until the tool tip appears.
The file name will be displayed there.

Open Previous File
This button displays a drop-down list of
previously opened files by this application.

Go To Last Directory
This button is used to go to the directory of the
last file opened by this application. To go to the
directory of other previously opened files, click
the small down-arrow button to the right. To
see which directory you will go to, simply hold
the mouse pointer over the button until the tool
tip appears. The directory name will be
displayed there.

Go To Previous Directory
This button displays a drop-down list of
directories of previously opened files by this
application.

Delete File/Directory
This button is used to delete the currently
selected file or directory. To delete a file or
directory, select the file/directory within either list
box, click this button, then answer Yes when
asked if you're sure.

Rename File/Directory
This button is used to rename the currently
selected file or directory. It is also used to
change the Long Name of the file. You can add
a long name to a regular file by clicking this
button and entering the long name in the
Description field.

Move File
This button is used to Move the currently
selected file. This operation will first copy the
file to the destination, then delete the source.

Copy File
This button is used to copy the currently
selected file.

Create Directory
This button is used to create a new directory.
You can enter an entire path if you wish, such
as...
C:\Documents\Mike's Files\Lists

File Properties
information about the currently selected file or
directory like its size, full name, date/time of
creation, age, etc., and allows you to change its
attributes.

Configuration
how IFA behaves with each application. You
can setup your Floaters and Permanents, setup
if the long filenames will appear in the list boxes
or in the status bar, and how you want your file
lists to appear.

Configurations & Wizards
This button displays a menu of other available
configurations and Wizards.

Find File/Text
Find one or more files, in one or more places,
and even find a particular text or phrase within
those files. This is done here, and found files
can be opened directly from this dialog.

Files Found
This button will display the list of files found in the
previous file search. This is only if you selected the
Copy... option in the File Find dialog.

Context Help
Press this button to enter the Context Help
mode. The button will turn into a flashing yellow
hand, which is what you must click to exit the
Context Help mode. Context Help is also
available from within any dialog box of IFA.
Once in Context Help mode, the cursor changes
shape to indicate fields with help attached.
Click a field and a popup help topic appears
explaining the purpose of the field. Once
finished, click the flashing indicator to exit
Context Help mode.

Status Bar
This is where the file details are shown.

If you have selected a file, you will see the Date and
Time of file creation or last modification, the file
attributes, the size of the file, and the DOS file name
if it has a Long Name.

If you have selected a directory, you will see the
Date and Time the directory was created, the
directory attributes, the total size of all files within
that directory, and the DOS name of the directory if it
has a Long Name.

If you have selected the root directory such as C:\,
you will see the total size of that disk drive and the
amount of space free.

Tool Tips
If you hold the mouse pointer over a toolbar
button for more than 1/4 second, this little yellow
friend will popup to tell you what that item is.

Adding More Viewers
A file viewer is simply a Dynamic Link Library (DLL) which exports a function named Viewer_Show. This
function is called when a file of the type associated with this viewer is clicked on in the Files listbox while
the ALT key is pressed. To associate a file type, the following syntax within the VIEW_TXT.DES file is
used...

{library name.DLL}, {file type 1}, {file type 2}, {...}

The exported function must be declared as follows ...

BOOL WINAPI __export Viewer_Show(LPCSTR lpszFile);

Where:
BOOL Return TRUE if the file was viewed.

Return FALSE if there was an error.
lpszFile Pointer to a full path name of the file to view.

The viewer should format the file for display, create a window of WM_POPUP style, then enter a message
loop until the user pressed a key or a mouse button. The window is then destroyed and the activation
set back to the original window.

See Also...
Sample Text Viewer

//
// Text File Viewer for Instant File Access
// Exported call: Viewer_Show
//
// Copyright (C) 1995, Alexoft
//
#include <windows.h>
#include <windowsx.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <malloc.h>
#include <memory.h>
#include <ctype.h>

#define VIEW_BUF 16000 // Buffer to hold viewed text
#define MAXLINES 15 // Maximum number of lines to view

HINSTANCE hInst;
BOOL fRegistered;
char szClassName[] = "IFATextViewClass";
LOGFONT lfTiny =
{
 -9, 0, 0, 0, FW_NORMAL, 0, 0, 0,
 DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
 CLIP_DEFAULT_PRECIS,
 PROOF_QUALITY, DEFAULT_PITCH|FF_DONTCARE,
 "Small Fonts"
};

typedef struct tagINFO
{
 BOOL fInView;
 HFONT hFont;
 LPSTR pszBuf;
 char szFile[_MAX_PATH+1];
}
INFO;

LRESULT CALLBACK fnViewerProc(HWND hwnd, UINT msg, WPARAM wParam,
 LPARAM lParam);

void _cdecl _setargv() {};
void _cdecl _setenvp() {};
void _cdecl _nullcheck() {};

int CALLBACK __export LibMain(HINSTANCE hInstance, WORD wDataSeg,
 WORD cbHeapSize, LPSTR lpszCmdLine)
{
 WNDCLASS wc;

 hInst = hInstance;

 if(wDataSeg)
 UnlockData(0);

 memset(&wc, 0, sizeof(WNDCLASS));

 wc.style = CS_SAVEBITS;
 wc.hCursor = LoadCursor(NULL, IDC_ARROW);
 wc.hInstance = hInst;
 wc.cbWndExtra = sizeof(INFO *);
 wc.lpfnWndProc = fnViewerProc;
 wc.lpszClassName = szClassName;

 if(!RegisterClass(&wc))

 return 0;

 return 1;
}

int CALLBACK __export WEP(int bSystemExit)
{
 UnregisterClass(szClassName, hInst);
 return 1;
}

BOOL WINAPI __export Viewer_Show(LPCSTR lpszFile)
{
 int iPos;
 INFO *i;
 HWND hwnd;
 POINT pt;
 FILE *fp;

 GetCursorPos(&pt);

 hwnd = CreateWindow(
 szClassName,
 NULL,
 WS_POPUP|WS_BORDER,
 pt.x, pt.y, 0, 0,
 NULL, (HMENU)0, hInst,
 NULL);

 if(hwnd == NULL)
 return FALSE;

 i = (INFO *)GetWindowLong(hwnd, 0);
 lstrcpy(i->szFile, lpszFile);

 fp = fopen(i->szFile, "r");
 if(fp)
 {
 int iLine;
 char *psz = malloc(1024);

 while(fgets(psz, 1024, fp))
 {
 if(psz[0] != \n)
 break;
 }

 for(iPos = iLine = 0; iLine < MAXLINES; iLine++)
 {
 int c;
 int s;

 for(c = s = 0; psz[c]; c++)
 {
 if(!isspace(psz[c]))
 s = c+1;
 }

 psz[s] = 0;

 if(iPos + lstrlen(psz) + 2 > VIEW_BUF)
 break;

 lstrcpy(i->pszBuf + iPos, psz);
 iPos += lstrlen(i->pszBuf + iPos);

 fgets(psz, 1024, fp);
 if(feof(fp))
 break;

 lstrcat(i->pszBuf + iPos, "\n");

 iPos++;
 }

 fclose(fp);
 realloc(i->pszBuf, iPos + 4);
 }

 SetCapture(hwnd);
 ShowWindow(hwnd, SW_SHOW);

 i->fInView = TRUE;

 while(i->fInView)
 {
 MSG msg;

 if(PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
 {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 }

 ReleaseCapture();
 DestroyWindow(hwnd);

 return TRUE;
}

BOOL Viewer_OnCreate(HWND hwnd, CREATESTRUCT FAR* lpCreateStruct)
{
 INFO *i = calloc(1, sizeof(INFO));
 if(i == NULL)
 return FALSE;

 i->pszBuf = calloc(1, VIEW_BUF + 1);
 if(i->pszBuf == NULL)
 {
 free(i);
 return FALSE;
 }

 SetWindowLong(hwnd, 0, (LONG)i);
 i->hFont = CreateFontIndirect(&lfTiny);

 return TRUE;
}

void Viewer_OnNCDestroy(HWND hwnd)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);
 DeleteFont(i->hFont);
 free(i->pszBuf);
 free(i);
}

void Viewer_OnPaint(HWND hwnd)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);

 HDC hdc;
 RECT rc;
 HFONT fontOld;
 PAINTSTRUCT ps;

 hdc = BeginPaint(hwnd, &ps);
 fontOld = SelectFont(hdc, i->hFont);
 SetBkColor(ps.hdc, RGB(0xFF, 0xFF, 0x00));
 SetBkMode(hdc, TRANSPARENT);
 GetClientRect(hwnd, &rc);
 ExtTextOut(hdc, 0, 0, ETO_OPAQUE, &rc, "", 0, NULL);

 OffsetRect(&rc, 1, 1);
 DrawText(hdc, i->pszBuf, -1, &rc, DT_LEFT|DT_NOPREFIX|DT_WORDBREAK);
 SelectFont(hdc, fontOld);
 EndPaint(hwnd, &ps);
}

void Viewer_OnShowWindow(HWND hwnd, BOOL fShow, UINT status)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);

 if(fShow)
 {
 HDC hdc;
 RECT rc;
 HFONT fontOld;

 SetRect(&rc, 0, 0, GetSystemMetrics(SM_CXSCREEN) / 4, 0);

 hdc = GetDC(NULL);
 fontOld = SelectFont(hdc, i->hFont);
 DrawText(hdc, i->pszBuf, -1, &rc,
 DT_LEFT|DT_NOPREFIX|DT_WORDBREAK|DT_CALCRECT);
 SelectFont(hdc, fontOld);
 ReleaseDC(NULL, hdc);

 AdjustWindowRect(&rc, WS_BORDER|WS_POPUP, FALSE);
 InflateRect(&rc, 2, 2);
 SetWindowPos(hwnd, NULL, 0, 0, rc.right - rc.left,
 rc.bottom - rc.top,
 SWP_NOZORDER|SWP_NOMOVE|SWP_NOACTIVATE);
 }
}

void Viewer_OnLButtonDown(HWND hwnd, BOOL fDoubleClick, int x, int y,
 UINT keyFlags)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);
 i->fInView = FALSE;
}

void Viewer_OnKeyDown(HWND hwnd, UINT vk, BOOL fDown, int cRepeat,
 UINT flags)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);
 i->fInView = FALSE;
}

void Viewer_OnLButtonUp(HWND hwnd, int x, int y, UINT keyFlags)
{
 INFO *i = (INFO *)GetWindowLong(hwnd, 0);
 i->fInView = FALSE;
}

LRESULT CALLBACK __export fnViewerProc(HWND hwnd, UINT msg,
 WPARAM wParam, LPARAM lParam)
{
 switch(msg)
 {
 HANDLE_MSG(hwnd, WM_CREATE, Viewer_OnCreate);
 HANDLE_MSG(hwnd, WM_KEYDOWN, Viewer_OnKeyDown);
 HANDLE_MSG(hwnd, WM_NCDESTROY, Viewer_OnNCDestroy);
 HANDLE_MSG(hwnd, WM_SHOWWINDOW, Viewer_OnShowWindow);
 HANDLE_MSG(hwnd, WM_RBUTTONDOWN, Viewer_OnLButtonDown);
 HANDLE_MSG(hwnd, WM_LBUTTONDOWN, Viewer_OnLButtonDown);
 HANDLE_MSG(hwnd, WM_RBUTTONUP, Viewer_OnLButtonUp);
 HANDLE_MSG(hwnd, WM_LBUTTONUP, Viewer_OnLButtonUp);
 HANDLE_MSG(hwnd, WM_PAINT, Viewer_OnPaint);
 }

 return DefWindowProc(hwnd, msg, wParam, lParam);
}

